Skip to main content

ECG Changes in Potassium Imbalance (Normokalemia, Hypokalemia, Hyperkalemia)

ECG Changes in Potassium Imbalance (Normokalemia, Hypokalemia, Hyperkalemia)

ECG Changes in Potassium Imbalance (Normokalemia, Hypokalemia, Hyperkalemia)


Potassium plays a central role in cardiac electrophysiology. Even small deviations from normal serum potassium levels can produce characteristic and sometimes life-threatening ECG changes. Understanding these patterns helps clinicians detect electrolyte disturbances early, often before laboratory confirmation.


This post explains ECG findings in normokalemia, hypokalemia, and hyperkalemia in a simple, clinically relevant, and bedside-oriented manner.


Normokalemia: The Reference ECG


A normal potassium level produces a balanced and stable cardiac electrical pattern.


Key ECG features: Normal P wave with normal amplitude and duration

Normal PR interval

Narrow QRS complex

Rounded, normal-sized T wave

U wave may be absent or very shallow if present


Clinical relevance: This ECG serves as the baseline for comparison. Any deviation from this pattern should raise suspicion of electrolyte or metabolic abnormalities.


Hypokalemia: Subtle but Dangerous


Hypokalemia affects myocardial repolarization and increases the risk of atrial and ventricular arrhythmias. ECG changes may appear even before symptoms develop.


Early ECG changes: Slight prolongation of PR interval

Flattening or slight peaking of P waves

ST segment depression

Flattened or shallow T waves


Classic ECG feature: Prominent U waves, best seen in precordial leads, especially V2–V4


Advanced hypokalemia: Apparent QT prolongation (actually due to T–U wave fusion)

Increased risk of atrial tachyarrhythmias, ventricular ectopy, torsades de pointes


Clinical pearl: A prominent U wave with ST depression should immediately prompt evaluation of serum potassium, especially in patients on diuretics.


Hyperkalemia: A True ECG Emergency


Hyperkalemia progressively slows conduction and can rapidly lead to fatal arrhythmias. ECG changes usually correlate with severity but may occasionally be absent despite high potassium levels.


Early ECG changes: Tall, peaked, tented T waves

Shortened QT interval


Progressive changes: Flattening and widening of P waves

Prolonged PR interval

Decreased R wave amplitude

Widened QRS complex


Severe hyperkalemia: Disappearance of P waves

Sine-wave pattern

Ventricular fibrillation or asystole


Clinical pearl: Tall peaked T waves with a widening QRS should be treated as hyperkalemia until proven otherwise, even before lab results return.


Why These ECG Changes Matter


Potassium disturbances are common in clinical practice, particularly in: Chronic kidney disease

Heart failure

Diuretic use

ACE inhibitors, ARBs, and potassium-sparing drugs

Diabetic ketoacidosis


Recognizing ECG changes allows rapid intervention, which can be life-saving.


Quick Comparison Summary


Normokalemia: Normal P, PR, QRS, and T wave


Hypokalemia: ST depression

Flat T waves

Prominent U waves

Apparent QT prolongation


Hyperkalemia: Tall peaked T waves

Widened QRS

Flattened or absent P waves

Risk of sine-wave arrest


Take-Home Message


The ECG is a powerful bedside tool for detecting potassium imbalance. Hypokalemia primarily affects repolarization and increases arrhythmia risk, while hyperkalemia slows conduction and can quickly become fatal. Always correlate ECG findings with clinical context and act promptly.


For more cardiology-focused, ECG-based learning resources, visit: Drmusmanjaved.com

Comments

Popular posts from this blog

2025 AHA/ACC Hypertension Guidelines Key points

  2025 AHA/ACC Hypertension Guidelines Explained: A Clear Summary for Clinicians and Students Hypertension remains one of the most significant contributors to cardiovascular morbidity and mortality worldwide. With continual refinement of evidence and risk-based strategies, the 2025 AHA/ACC Hypertension Guidelines bring an updated, practical approach that clinicians can use in daily practice. To make learning easier, I’ve created a clean and modern infographic summarizing all major recommendations. You can download it below and use it for study, teaching, or clinical reference. Download Infographic (PNG): 2025 Hypertension Guideline Infographic This post breaks down the key points from the guidelines and complements the infographic for a complete understanding. --- BP Categories: Understanding the Updated Thresholds The guidelines maintain the well-established classification of blood pressure: Normal: <120 / <80 Elevated: 120–129 / <80 Stage 1 Hypertension: 130–139 and/or 8...

STEMI ECG Criteria and Universal Definition of MI

  STEMI ECG Criteria and the Universal Definition of Myocardial Infarction: A Complete Guide for Clinicians Early and accurate diagnosis of acute myocardial infarction (AMI) remains the cornerstone of reducing morbidity and mortality in patients presenting with chest pain. Among all forms of acute coronary syndromes (ACS), ST-elevation myocardial infarction (STEMI) represents the most time-sensitive emergency, requiring immediate reperfusion therapy. This article provides a clinically relevant summary of the STEMI ECG criteria and the Universal Definition of Myocardial Infarction (UDMI), based on the latest consensus guidelines from the ESC, ACC, AHA, and WHF. --- 1. Understanding STEMI: Why Accurate ECG Interpretation Matters A 12-lead ECG remains the first and most critical diagnostic test when evaluating suspected myocardial infarction. STEMI is identified when there is evidence of acute coronary artery occlusion, producing transmural ischemia and characteristic ST-segment eleva...

Learn Echocardiography | Standard Protocol for Performing Comprehensive Echocardiogram | Explained with Images and Videos

  If you are just starting to learn echocardiography, you will find that learning the full echo examination protocol will be immensely useful. The full protocol will provide a solid foundation for your career in echo. I personally found that once I could execute the standard protocol flawlessly, I was able to add and refine additional echo scanning skills while deepening my understanding of the purpose of each echo image. The echo protocol illustrated in this article is the same one we currently use for all our patients in the hospital and meets or exceeds the standards of American Society of Echocardiography (ASE) for an adult echocardiography examination. The protocol presented here is meant as a guideline and does not cover every aspect (such as off axis views) of an echo examination. Also other hospitals will probably have slight variations of this protocol depending on the lab's needs, which is normal. This article's main purpose is to provide a solid foundation for ...