Skip to main content

Broken Heart Syndrome (Takotsubo Syndrome, Stress Cardiomyopathy)


 Broken Heart Syndrome (Takotsubo Syndrome, Stress Cardiomyopathy)


Definition
Broken heart syndrome, also known as Takotsubo syndrome (TTS), is an acute, reversible heart failure syndrome characterized by transient left ventricular systolic dysfunction, usually triggered by intense emotional or physical stress, in the absence of obstructive coronary artery disease sufficient to explain the presentation.

Epidemiology
Predominantly affects postmenopausal women (≈85–90%)
Accounts for 1–3% of patients presenting with suspected acute coronary syndrome (ACS)
Increasing recognition due to routine coronary angiography and cardiac MRI

Pathophysiology (Guideline-based concepts)
Exact mechanism remains multifactorial and incompletely understood. Current ESC and international consensus emphasize:

Catecholamine excess
Sudden surge in catecholamines leading to myocardial stunning, microvascular dysfunction, and direct myocyte toxicity

Coronary microvascular dysfunction
Impaired coronary flow reserve without epicardial obstruction

Myocardial energy metabolism impairment
Switch to inefficient energy utilization causing transient systolic dysfunction

Estrogen deficiency
Explains female predominance and increased vulnerability to catecholamine-mediated injury

Triggers
Emotional stress
Bereavement, fear, anger, bad news

Physical stress
Sepsis, stroke, surgery, trauma, acute respiratory failure

Neurologic and psychiatric conditions
Subarachnoid hemorrhage, epilepsy, anxiety, depression

Clinical Presentation
Typically mimics ACS

Acute chest pain
Dyspnea
Syncope or cardiogenic shock (severe cases)
Arrhythmias and acute heart failure may occur

Electrocardiogram Findings
Dynamic and evolving changes:

ST-segment elevation (often modest, diffuse)
ST depression (less common)
Deep T-wave inversions (subacute phase)
QTc prolongation (important predictor of ventricular arrhythmias)

Cardiac Biomarkers
Troponin: mildly to moderately elevated (disproportionately low relative to LV dysfunction)
BNP / NT-proBNP: markedly elevated (often higher than ACS)

Imaging Features

Echocardiography
Transient regional wall motion abnormalities extending beyond a single coronary territory
Typical patterns: Apical ballooning (classic, ~75–80%)
Mid-ventricular
Basal (reverse Takotsubo)
Focal

Coronary Angiography
Mandatory in suspected ACS presentation
No culprit obstructive coronary disease or plaque rupture explaining LV dysfunction

Cardiac MRI (Guideline recommended when diagnosis uncertain)
Key findings: Myocardial edema on T2-weighted imaging
Absence of late gadolinium enhancement (distinguishes from MI and myocarditis)

Diagnostic Criteria (International / ESC-endorsed principles)

1. Transient LV systolic dysfunction (regional wall motion abnormalities beyond a single epicardial coronary territory)


2. Triggering emotional, physical, or combined stress (not mandatory)


3. New ECG abnormalities or modest troponin elevation


4. Absence of infectious myocarditis (preferably excluded by CMR)


5. No culprit coronary artery disease explaining the dysfunction


6. Recovery of ventricular function on follow-up imaging



Important: Presence of coronary artery disease does not exclude Takotsubo syndrome if it does not explain the LV dysfunction.

Differential Diagnosis
Acute coronary syndrome
Myocarditis
MINOCA
Pheochromocytoma-related cardiomyopathy
Acute decompensated heart failure

Management (Guideline-Directed, Evidence-Based)

Acute Phase
Treat initially as ACS until diagnosis confirmed

Hemodynamically stable patients
Beta-blockers (to blunt catecholamine effect)
ACE inhibitors or ARBs (improve LV recovery and outcomes)
Diuretics if congested
Avoid inotropes if possible

Hemodynamic instability or shock
Exclude LV outflow tract obstruction (LVOTO) first
If LVOTO present: Avoid inotropes
Use beta-blockers
Volume expansion
Phenylephrine may be considered
If no LVOTO: Careful use of inotropes or mechanical circulatory support (IABP, Impella, VA-ECMO) if needed

Anticoagulation
Indicated if: Severe LV dysfunction
Apical akinesia with LV thrombus or high thrombus risk
Continue until LV recovery documented

Arrhythmia Management
Monitor QTc closely
Avoid QT-prolonging drugs
Treat ventricular arrhythmias per standard protocols

Long-Term Management and Follow-Up

ACE inhibitors / ARBs
Recommended for at least 3–6 months or until full LV recovery
Associated with improved survival in observational studies

Beta-blockers
May reduce recurrence, though evidence is inconsistent
Often continued long-term, especially in stress-triggered cases

Repeat Echocardiography
At 4–6 weeks to document recovery
Complete normalization of LV function is typical

Prognosis
Previously considered benign, now recognized as a serious condition

In-hospital mortality: 3–5%
Comparable long-term mortality to ACS
Recurrence rate: 5–10%
Triggers and male sex associated with worse outcomes

Complications
Acute heart failure
Cardiogenic shock
Ventricular arrhythmias
LV thrombus and embolic stroke
Mitral regurgitation
LV outflow tract obstruction

Key Guideline Take-Home Messages

Takotsubo syndrome is an acute heart failure syndrome, not benign
Always rule out ACS with coronary angiography in acute presentations
Cardiac MRI is central to diagnosis and exclusion of myocarditis
ACE inhibitors or ARBs are the cornerstone of therapy during recovery
Prognosis depends on trigger type, comorbidities, and complications
Structured follow-up is mandatory despite apparent recovery

For more cardiology-focused, guideline-based educational content, visit drmusmanjaved.com

Comments

Popular posts from this blog

π˜Όπ™£π™©π™žπ™˜π™€π™–π™œπ™ͺπ™‘π™–π™©π™žπ™€π™£ π˜Όπ™›π™©π™šπ™§ π™Žπ™©π™§π™€π™ π™š

 π˜Όπ™£π™©π™žπ™˜π™€π™–π™œπ™ͺπ™‘π™–π™©π™žπ™€π™£ π˜Όπ™›π™©π™šπ™§ π™Žπ™©π™§π™€π™ π™š in  Patient with AF and acute IS/TIA European Heart Association Guideline recommends: • 1 days after TIA • 3 days after mild stroke • 6 days after moderate stroke • 12 days after severe stroke Early anticoagulation can decrease a risk of recurrent stroke and embolic events but may increase a risk of secondary hemorrhagic transformation of brain infarcts.  The 1-3-6-12-day rule is a known consensus with graded increase in delay of anticoagulation between 1 and 12 days after onset of ischemic stroke or transient ischemic attack(TIA), according to neurological severity based on European expert opinions. However, this rule might be somewhat later than currently used in a real-world practical setting.

STEMI ECG Criteria and Universal Definition of MI

  STEMI ECG Criteria and the Universal Definition of Myocardial Infarction: A Complete Guide for Clinicians Early and accurate diagnosis of acute myocardial infarction (AMI) remains the cornerstone of reducing morbidity and mortality in patients presenting with chest pain. Among all forms of acute coronary syndromes (ACS), ST-elevation myocardial infarction (STEMI) represents the most time-sensitive emergency, requiring immediate reperfusion therapy. This article provides a clinically relevant summary of the STEMI ECG criteria and the Universal Definition of Myocardial Infarction (UDMI), based on the latest consensus guidelines from the ESC, ACC, AHA, and WHF. --- 1. Understanding STEMI: Why Accurate ECG Interpretation Matters A 12-lead ECG remains the first and most critical diagnostic test when evaluating suspected myocardial infarction. STEMI is identified when there is evidence of acute coronary artery occlusion, producing transmural ischemia and characteristic ST-segment eleva...

2025 AHA/ACC Hypertension Guidelines Key points

  2025 AHA/ACC Hypertension Guidelines Explained: A Clear Summary for Clinicians and Students Hypertension remains one of the most significant contributors to cardiovascular morbidity and mortality worldwide. With continual refinement of evidence and risk-based strategies, the 2025 AHA/ACC Hypertension Guidelines bring an updated, practical approach that clinicians can use in daily practice. To make learning easier, I’ve created a clean and modern infographic summarizing all major recommendations. You can download it below and use it for study, teaching, or clinical reference. Download Infographic (PNG): 2025 Hypertension Guideline Infographic This post breaks down the key points from the guidelines and complements the infographic for a complete understanding. --- BP Categories: Understanding the Updated Thresholds The guidelines maintain the well-established classification of blood pressure: Normal: <120 / <80 Elevated: 120–129 / <80 Stage 1 Hypertension: 130–139 and/or 8...