Skip to main content

Acid Base Disorders

 


 Acid–base disorders are common clinical problems resulting from disturbances in hydrogen ion (H⁺) balance. Understanding them is essential for interpreting arterial blood gases (ABGs), managing critically ill patients, and identifying underlying systemic diseases.


---

Acid–Base Physiology (Quick Review)

Normal arterial values
pH: 7.35–7.45
PaCO₂: 35–45 mmHg (respiratory component)
HCO₃⁻: 22–26 mEq/L (metabolic component)

Key relationship (Henderson–Hasselbalch concept):
pH depends on the ratio of HCO₃⁻ (kidney) to PaCO₂ (lungs)


---

Classification of Acid–Base Disorders

There are four primary acid–base disorders:

1. Metabolic Acidosis


2. Metabolic Alkalosis


3. Respiratory Acidosis


4. Respiratory Alkalosis



Each primary disorder triggers a predictable compensatory response.


---

1. Metabolic Acidosis

Definition
↓ pH, ↓ HCO₃⁻

Mechanisms
• Increased acid production
• Loss of bicarbonate
• Reduced acid excretion

Anion Gap (AG)

AG = Na⁺ − (Cl⁻ + HCO₃⁻)
Normal: 8–12 mEq/L

High Anion Gap Metabolic Acidosis (HAGMA)

Common causes (GOLD MARK):
• Glycols (ethylene, propylene)
• Oxoproline (chronic paracetamol use)
• L-lactate (shock, sepsis)
• D-lactate
• Methanol
• Aspirin
• Renal failure
• Ketoacidosis (DKA, starvation, alcohol)

Normal Anion Gap Metabolic Acidosis (NAGMA)

• Diarrhea
• Renal tubular acidosis
• Saline infusion
• Pancreatic fistula

Compensation (Winter’s Formula)

Expected PaCO₂ = (1.5 × HCO₃⁻) + 8 ± 2
If measured PaCO₂ differs → mixed disorder


---

2. Metabolic Alkalosis

Definition
↑ pH, ↑ HCO₃⁻

Mechanisms
• Loss of hydrogen ions
• Gain of bicarbonate
• Volume depletion with chloride loss

Causes

• Vomiting, nasogastric suction
• Diuretics (loop, thiazide)
• Hyperaldosteronism
• Excess bicarbonate intake

Chloride-Based Classification

Chloride-responsive:
• Vomiting
• Diuretics
Responds to saline

Chloride-resistant:
• Primary hyperaldosteronism
• Cushing syndrome

Compensation

Expected PaCO₂ ≈ 0.7 × (HCO₃⁻ − 24) + 40 ± 5


---

3. Respiratory Acidosis

Definition
↓ pH, ↑ PaCO₂

Mechanism
Alveolar hypoventilation → CO₂ retention

Causes

• COPD, asthma (severe)
• CNS depression (opioids, sedatives)
• Neuromuscular disorders
• Chest wall abnormalities

Acute vs Chronic

Acute:
• Small rise in HCO₃⁻ (no renal compensation yet)

Chronic:
• Significant ↑ HCO₃⁻ due to renal adaptation


---

4. Respiratory Alkalosis

Definition
↑ pH, ↓ PaCO₂

Mechanism
Hyperventilation → excessive CO₂ loss

Causes

• Anxiety, panic attacks
• Hypoxemia (PE, pneumonia, high altitude)
• Sepsis (early)
• Pregnancy
• Liver disease

Compensation

Kidneys excrete bicarbonate over time
More pronounced in chronic states


---

Stepwise Approach to ABG Interpretation

1. Look at pH
• Acidemia (<7.35) or alkalemia (>7.45)


2. Identify primary disorder
• PaCO₂ → respiratory
• HCO₃⁻ → metabolic


3. Check compensation
• Use formulas (Winter’s, expected PaCO₂/HCO₃⁻)


4. Calculate anion gap (if metabolic acidosis)


5. Look for mixed disorders
• pH near normal with abnormal PaCO₂ and HCO₃⁻
• Inappropriate compensation




---

Mixed Acid–Base Disorders (Examples)

• Metabolic acidosis + respiratory alkalosis (sepsis)
• Metabolic alkalosis + respiratory acidosis (COPD + vomiting)
• DKA with vomiting (high AG acidosis + alkalosis)

Clues:
• Normal pH with abnormal values
• Compensation outside expected range


---

Clinical Pearls

• Always interpret ABG in clinical context
• Normal pH does not exclude serious pathology
• Anion gap helps narrow diagnosis rapidly
• Compensation never overcorrects pH
• Mixed disorders are common in ICU patients


---

Summary Table

Disorder pH PaCO₂ HCO₃⁻

Metabolic Acidosis ↓ ↓ (comp) ↓
Metabolic Alkalosis ↑ ↑ (comp) ↑
Respiratory Acidosis ↓ ↑ ↑ (chronic)
Respiratory Alkalosis ↑ ↓ ↓ (chronic)



---

For more cardiology and critical care infographics, visit:
drmusmanjaved.com


Comments

Popular posts from this blog

STEMI ECG Criteria and Universal Definition of MI

  STEMI ECG Criteria and the Universal Definition of Myocardial Infarction: A Complete Guide for Clinicians Early and accurate diagnosis of acute myocardial infarction (AMI) remains the cornerstone of reducing morbidity and mortality in patients presenting with chest pain. Among all forms of acute coronary syndromes (ACS), ST-elevation myocardial infarction (STEMI) represents the most time-sensitive emergency, requiring immediate reperfusion therapy. This article provides a clinically relevant summary of the STEMI ECG criteria and the Universal Definition of Myocardial Infarction (UDMI), based on the latest consensus guidelines from the ESC, ACC, AHA, and WHF. --- 1. Understanding STEMI: Why Accurate ECG Interpretation Matters A 12-lead ECG remains the first and most critical diagnostic test when evaluating suspected myocardial infarction. STEMI is identified when there is evidence of acute coronary artery occlusion, producing transmural ischemia and characteristic ST-segment eleva...

π˜Όπ™£π™©π™žπ™˜π™€π™–π™œπ™ͺπ™‘π™–π™©π™žπ™€π™£ π˜Όπ™›π™©π™šπ™§ π™Žπ™©π™§π™€π™ π™š

 π˜Όπ™£π™©π™žπ™˜π™€π™–π™œπ™ͺπ™‘π™–π™©π™žπ™€π™£ π˜Όπ™›π™©π™šπ™§ π™Žπ™©π™§π™€π™ π™š in  Patient with AF and acute IS/TIA European Heart Association Guideline recommends: • 1 days after TIA • 3 days after mild stroke • 6 days after moderate stroke • 12 days after severe stroke Early anticoagulation can decrease a risk of recurrent stroke and embolic events but may increase a risk of secondary hemorrhagic transformation of brain infarcts.  The 1-3-6-12-day rule is a known consensus with graded increase in delay of anticoagulation between 1 and 12 days after onset of ischemic stroke or transient ischemic attack(TIA), according to neurological severity based on European expert opinions. However, this rule might be somewhat later than currently used in a real-world practical setting.

2025 AHA/ACC Hypertension Guidelines Key points

  2025 AHA/ACC Hypertension Guidelines Explained: A Clear Summary for Clinicians and Students Hypertension remains one of the most significant contributors to cardiovascular morbidity and mortality worldwide. With continual refinement of evidence and risk-based strategies, the 2025 AHA/ACC Hypertension Guidelines bring an updated, practical approach that clinicians can use in daily practice. To make learning easier, I’ve created a clean and modern infographic summarizing all major recommendations. You can download it below and use it for study, teaching, or clinical reference. Download Infographic (PNG): 2025 Hypertension Guideline Infographic This post breaks down the key points from the guidelines and complements the infographic for a complete understanding. --- BP Categories: Understanding the Updated Thresholds The guidelines maintain the well-established classification of blood pressure: Normal: <120 / <80 Elevated: 120–129 / <80 Stage 1 Hypertension: 130–139 and/or 8...