Skip to main content

MCQ 6

Cardio mcqs
A 70-year-old male with a past medical history of hypertension and chronic obstructive pulmonary disease (not on oxygen) presented to the emergency room with complaints of shortness of breath of 3 months duration. Shortness of breath was gradual in onset and progressive in nature and associated with intermittent vague chest pain. He denied associated diaphoresis and nausea but admits to pedal edema and 3 pillow orthopnea. Physical exam was remarkable for the obese male not in acute distress. Bibasilar crackles were noted. 2 + pitting pedal edema. JVD was also noted. The patient was admitted to medicine. Iv Furosemide 60 mg iv was started. The next day 2D echocardiogram was done which revealed anterior wall motion abnormalities. Cardiology was consulted. The patient subsequently underwent cardiac catheterization which revealed a heavily calcified lesion involving ostial to mid part of the left anterior descending artery. An attempt at stent placement was unsuccessful. A decision to proceed with rotational atherectomy was done. What would be the optimal rotational speed for rotational atherectomy and the duration of ablation during each pass through the coronary artery?

A. 100,000 rpm and 20 to 30 seconds
B. 150,000 rpm and 20 to 30 seconds
C. 220,000 rpm and 45 seconds
D. 100,000 rpm and 60 seconds
Click the button below to view answer:

Comments

Popular posts from this blog

Brugada ECG vs Incomplete Right Bundle Branch Block (iRBBB)

Brugada ECG vs Incomplete Right Bundle Branch Block (iRBBB) Why this differentiation matters Brugada pattern is a malignant channelopathy associated with sudden cardiac death, while incomplete RBBB is usually a benign conduction variant. Mislabeling Brugada as iRBBB can be fatal; overcalling iRBBB as Brugada can lead to unnecessary anxiety and ICD implantation. --- 1. Basic Definitions Brugada ECG Pattern Primary repolarization abnormality Genetic sodium-channel disorder Characteristic ST-segment elevation in V1–V3 Risk of ventricular fibrillation and sudden death Incomplete RBBB (iRBBB) Depolarization abnormality Delay in right ventricular conduction Common in healthy individuals Usually asymptomatic and benign --- 2. ECG Morphology: Side-by-Side Comparison QRS Duration Brugada: QRS usually <120 ms iRBBB: QRS <120 ms, but with RBBB morphology --- V1–V2 Pattern (Key Differentiator) Brugada Pseudo-RBBB appearance ST elevation ≥2 mm ST segment is coved or saddleback Terminal QRS bl...

Acute Treatment of Hyperkalemia

Acute Treatment of Hyperkalemia – A Practical, Bedside-Oriented Guide Hyperkalemia is a potentially life-threatening electrolyte abnormality that demands prompt recognition and decisive management. The danger lies not only in the absolute potassium value but in its effects on cardiac conduction, which can rapidly progress to fatal arrhythmias. Acute treatment focuses on three parallel goals: stabilizing the cardiac membrane, shifting potassium into cells, and removing excess potassium from the body. Understanding this stepwise approach helps clinicians act quickly and rationally in emergency settings. Why Hyperkalemia Is Dangerous Potassium plays a key role in maintaining the resting membrane potential of cardiac myocytes. Elevated serum potassium reduces the transmembrane gradient, leading to slowed conduction, ECG changes, ventricular arrhythmias, and asystole. Importantly, ECG changes do not always correlate with potassium levels, so treatment decisions should be based on clinical c...

π˜Όπ™£π™©π™žπ™˜π™€π™–π™œπ™ͺπ™‘π™–π™©π™žπ™€π™£ π˜Όπ™›π™©π™šπ™§ π™Žπ™©π™§π™€π™ π™š

 π˜Όπ™£π™©π™žπ™˜π™€π™–π™œπ™ͺπ™‘π™–π™©π™žπ™€π™£ π˜Όπ™›π™©π™šπ™§ π™Žπ™©π™§π™€π™ π™š in  Patient with AF and acute IS/TIA European Heart Association Guideline recommends: • 1 days after TIA • 3 days after mild stroke • 6 days after moderate stroke • 12 days after severe stroke Early anticoagulation can decrease a risk of recurrent stroke and embolic events but may increase a risk of secondary hemorrhagic transformation of brain infarcts.  The 1-3-6-12-day rule is a known consensus with graded increase in delay of anticoagulation between 1 and 12 days after onset of ischemic stroke or transient ischemic attack(TIA), according to neurological severity based on European expert opinions. However, this rule might be somewhat later than currently used in a real-world practical setting.